Respiratory Failure in the Acute Care Setting

A Clinical Guide

Silya Mazigh, MD

Riverside Advanced Practice Provider Conference

02/08/2025

Disclosures

• I have no financial relationships to disclose.

Objectives

- Define respiratory failure and its types.
- Discuss the pathophysiology and common causes.
- Identify clinical signs and apply evidence-based diagnostic tools.
- Systematically interpret ABGs and identify respiratory failure patterns.
- Review management protocols in acute care.

Case presentation

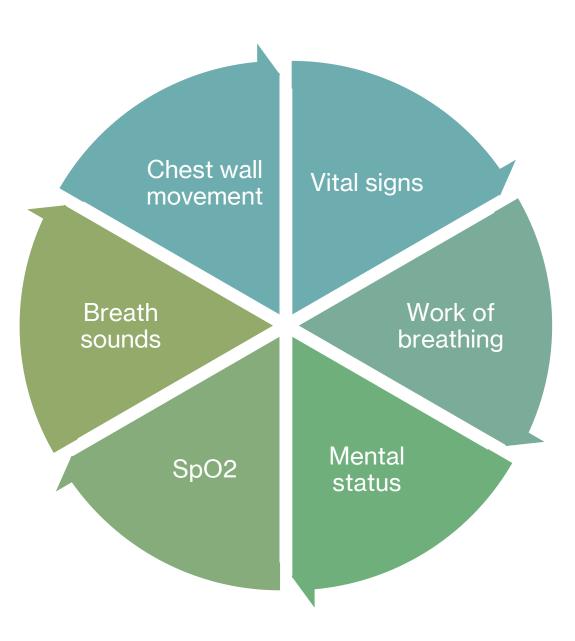
•Patient: 68-year-old male

•PMH: severe COPD on 2L/min NC at baseline, OSA on CPAP (poor compliance)

•Chief Complaint: Increased shortness of breath

•HPI:

 Increased sputum production (yellow/green), wheezing, and worsening dyspnea over 48 hours


•Family reports new confusion and lethargy

•No fever, chest pain, or leg swelling

Diagnostic Approach

Initial Assessment

Physical Exam

- Vitals: BP: 145/85 mmHg, HR: 98 bpm, RR: 28/min, SpO₂: 86% on 2L NC, Temp: 37.0°C
- General: Drowsy, but arousable
- Respiratory:
 - Labored breathing, accessory muscle use
 - Diffusely diminished breath sounds, expiratory wheezing
 - Prolonged expiratory phase
- Neurologic:
 - A&O x 2 (disoriented to place)
 - No focal deficits

Preliminary diagnoses

Definition and Classification of Respiratory Failure

Definition: Failure of the respiratory system to maintain oxygenation or ventilation.

Types:

- Type 1: Hypoxic
 - PaO2 < 60 mmHg on room air
 - SpO2 ≤ 90% on room air (SpO2 of 91% correlates with PO2 of 60 mmHg
 - A-a gradient > 20 mmHg

• Type 2: Hypercapnic

• PaCO2 > 45 mmHg with a pH < 7.35 acutely

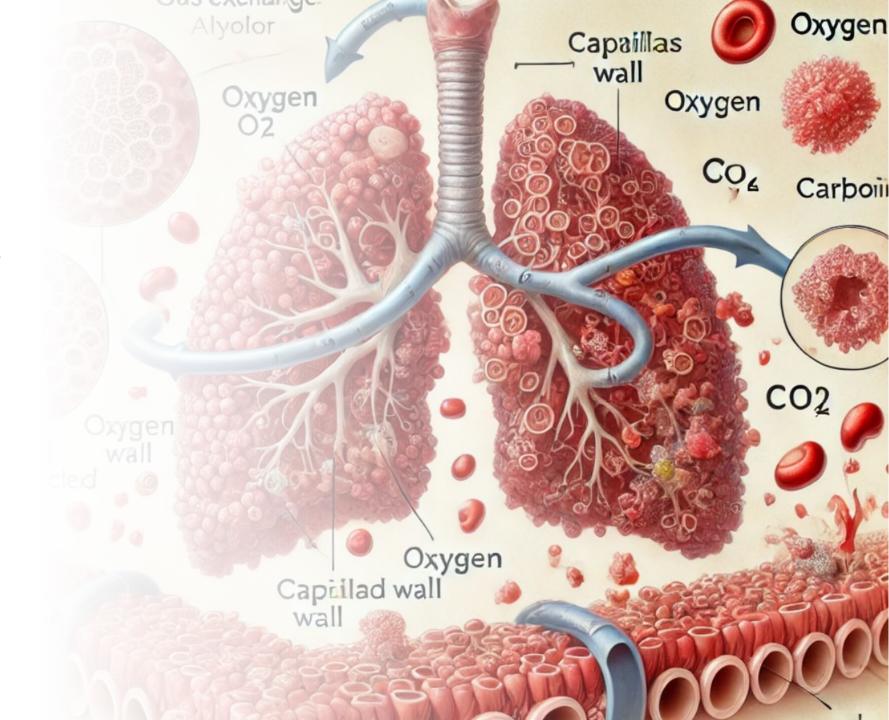
Acute vs. Chronic vs. Acute-on-Chronic.

Definition and Classification of Respiratory Failure

Chronic:

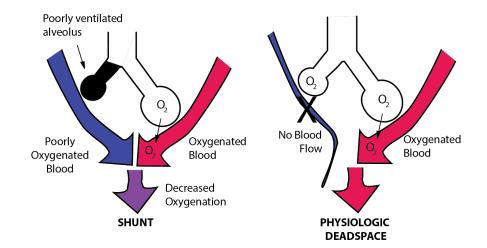
- Hypoxic:
 - Dependence on continuous home O2

• Hypercapnic:

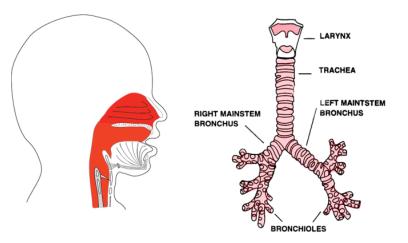

Dependence on home non-invasive mechanical ventilation (BiPAP, AVAPS, etc.)

Acute on Chronic:

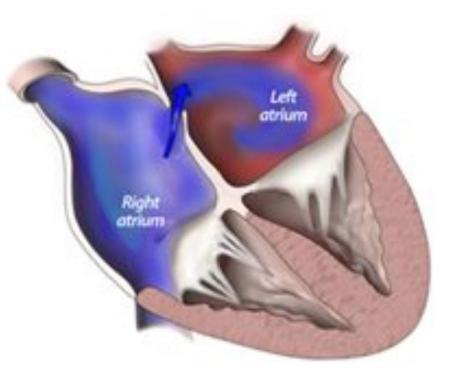
- Hypoxic
 - Drop in PaO2 > 10 mmHg from baseline
 - Increased O2 requirements from baseline to maintain SpO2 > 88%
- Hypercapnic
 - PaCO2 > 10 mmHg above baseline and pH < 7.35


Pathophysiology of Hypoxia

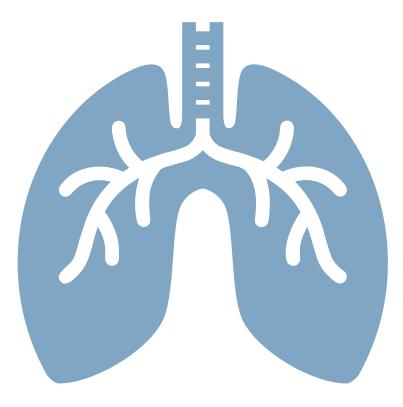
- Ventilation/perfusion (V/Q) mismatch.
- Right-to-Left Shunt (mechanical or physiologic).
- Dead Space Ventilation.
- Diffusion Limitation.
- Reduced inspired oxygen tension (high altitude sickness).


Ventilation/perfusion (V/Q) mismatch

- The balance between ventilation (V) (air reaching the alveoli) and perfusion (Q) (blood flow to the alveoli) is disrupted.
- Low V/Q (Shunt-like Physiology)
 - Poor Ventilation, Normal Perfusion
 - Shunt is perfusion of poorly ventilated alveoli
 - **Pathophysiology:** Alveoli are poorly ventilated but still perfused → Blood remains deoxygenated, leading to hypoxemia.
- High V/Q (Dead Space-like Effect)
 - Poor Perfusion, Normal Ventilation
 - Physiologic dead space is ventilation of poor perfused alveoli.
 - **Pathophysiology:** Alveoli are ventilated but receive little or no perfusion → Wasted ventilation.


Dead Space

- **Tidal volume:** the amount of air that move in and out of the lungs with each respiratory cycle.
- **Dead Space:** the parts of the respiratory system that do not participate in gas exchange.
 - **Anatomic**: the fixed parts of the respiratory system that are ventilated but not perfused. Anatomic dead space is about 1/3 of normal tidal volume in an adult.
 - **Physiologic**: alveoli that are ventilated, but not perfused. Physiologic dead space can change as blood flow increases.
 - **Equipment**: the volume inside the ventilation mask or endotracheal tube, the connecting elbow, and the breathing circuit. This volume becomes significant in small patients or small tidal volumes.


Intracardiac Shunt

- Allows deoxygenated blood from the right side of the heart to mix with oxygenated blood on the left side, bypassing the lungs and resulting in a lower overall oxygen level in the bloodstream → Right-to-left shunt.
- Causes of right to left shunt: patent foramen ovale, atrial septal defect, ventricular septal defect, congenital heart disease.

Diffusion Limitation

- Oxygen transport across the alveolar-capillary membrane is impaired.
- Typically results from thickening or destruction of the alveolarcapillary interface → slower diffusion of oxygen from alveoli into the blood.
- Common causes:
 - •Interstitial lung disease (ILD)/Pulmonary fibrosis
 - •Sarcoidosis
 - Asbestosis
 - Scleroderma

Reduced inspired oxygen tension

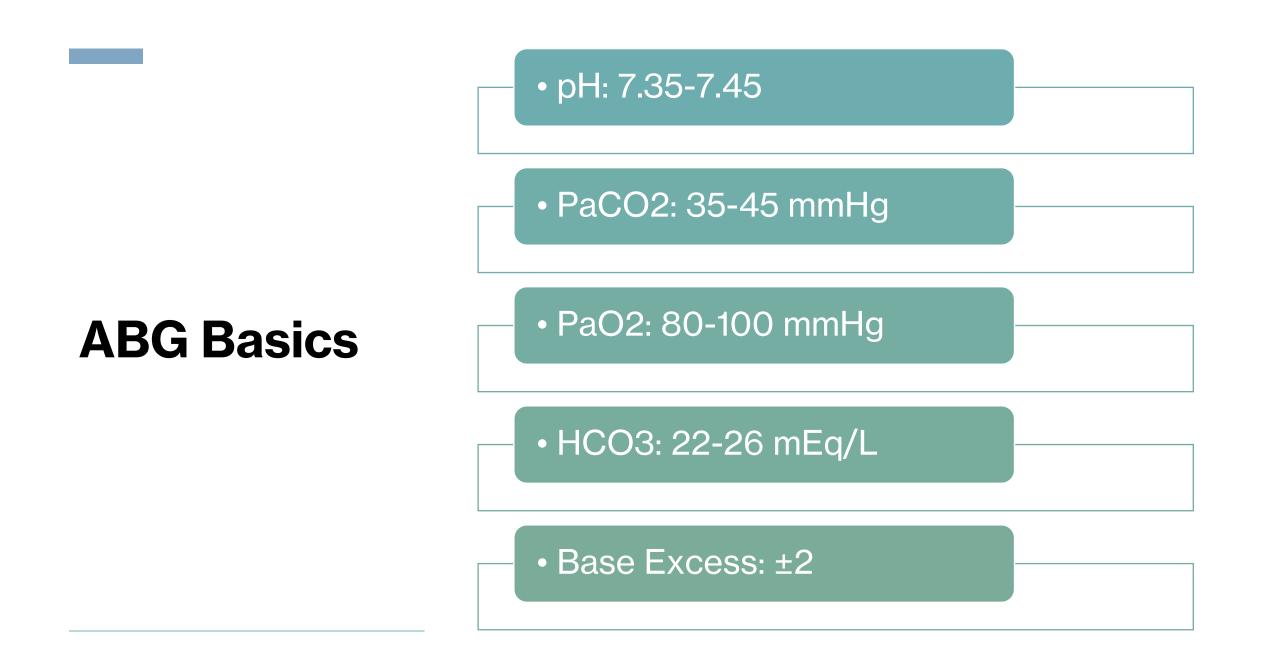
• High altitude sickness

Case presentation

Which mechanism is the main cause of hypoxia?

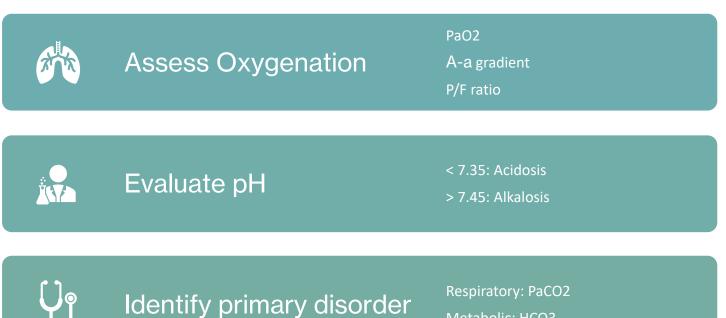
Additional diagnoses?

Immediate Testing


ABG/VBG

CXR

CBC, BMP


Lactate

ECG

Case Presentation - ABG

Parameter	Value	Interpretation
pН	7.25	
PaCO2	72 mmHg	
PaO2	50 mmHg	
HCO3-	30 mEq/L	
FiO2	21% (room air)	

ABG Interpretation

Metabolic: HCO3

Check compensation

Winter's formula Expected HCO3 change

+ -× ÷

Calculate A-a gradient

Bohr equation

Bohr Equation

• Physiologic dead space:

$$\mathrm{VD/VT} = rac{P_a C O_2 - P_E C O_2}{P_a C O_2}$$

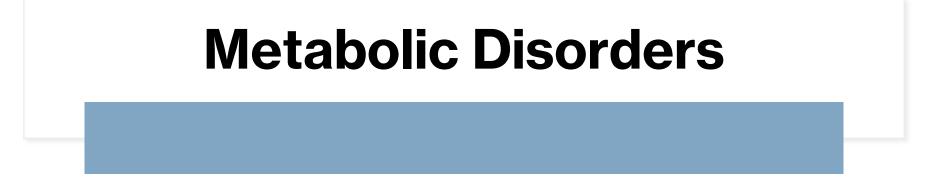
VD: Dead space volume.

VT: Tidal volume.

PaCO2: Partial pressure of carbon dioxide in arterial blood.

PeCO2: Partial pressure of carbon dioxide in exhaled air.

Compensation Principles

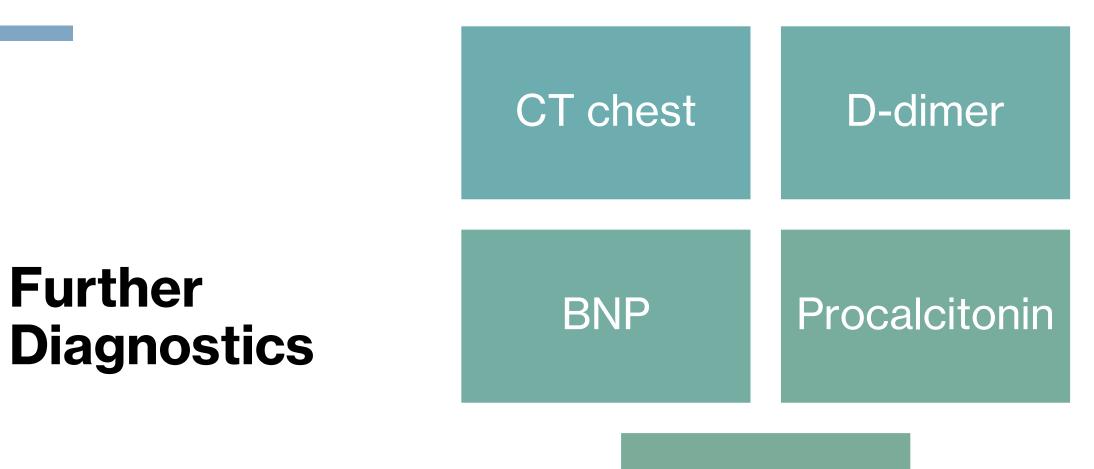

Metabolic compensation: The kidneys adjust bicarbonate (HCO3–) levels in response to respiratory disorders. This is a slower process, taking hours to days.

Respiratory compensation: The lungs adjust carbon dioxide (PaCO2) levels in response to metabolic disorders. This is a faster process, occurring within minutes to hours.

Respiratory Disorders

Primary Disorder	Compensation Mechanism	Expected Compensation
Respiratory Acidosis (1 PaCO ₂)	Kidneys retain HCO₃⁻ (↑ HCO₃⁻)	- Acute: ↑ HCO ₃ ⁻ by 1 mEq/L per 10 mmHg ↑ PaCO ₂ - Chronic: ↑ HCO ₃ ⁻ by 3.5 mEq/L per 10 mmHg ↑ PaCO ₂
Respiratory Alkalosis (↓ PaCO₂)	Kidneys excrete HCO₃⁻ (↓ HCO₃⁻)	- Acute: ↓ HCO ₃ ⁻ by 2 mEq/L per 10 mmHg ↓ PaCO ₂ - Chronic: ↓ HCO ₃ ⁻ by 4-5 mEq/L per 10 mmHg ↓ PaCO ₂

Primary Disorder	Compensation Mechanism	Expected Compensation (Winter's Formula)
Metabolic Acidosis (↓ HCO₃ ⁻)	Hyperventilation (↓ PaCO₂)	$PaCO_2 = (1.5 \times HCO_3) + 8 \pm 2$
Metabolic Alkalosis (↑ HCO₃ ⁻)	Hypoventilation (↑ PaCO ₂)	PaCO₂ increases by ~0.6 mmHg per 1 mEq/L HCO₃ [−]


Simplified Rules for Expected Compensation

Primary Disorder	Compensation Mechanism	Expected Change
Metabolic Acidosis	Decrease in P_aCO_2	$P_aCO_2=(HCO_3^-+15)\pm 5$
Metabolic Alkalosis	Increase in P_aCO_2	$P_aCO_2=(HCO_3^-+15)$
Respiratory Acidosis (Acute)	Increase in HCO_3^-	$\Delta HCO_3^- = 1 ext{ per 10 mmHg} \ P_aCO_2$
Respiratory Acidosis (Chronic)	Increase in HCO_3^-	$\Delta HCO_3^- = 4 ext{ per 10 mmHg} \ P_aCO_2$
Respiratory Alkalosis (Acute)	Decrease in HCO_3^-	$\Delta HCO_3^- = 2 ext{ per 10 mmHg} \ P_aCO_2$
Respiratory Alkalosis (Chronic)	Decrease in HCO_3^-	$\Delta HCO_3^- = 5~{ m per}~10~{ m mmHg}~P_aCO_2$

Additional diagnoses?

Test Results

CXR: hyperinflation, no acute cardiopulmonary process
 ECG: sinus tachycardia, no ST-T changes
 CBC: WBC 12.5K
 BMP: significant electrolyte imbalances, normal renal function
 Lactic acid: 1.2 mmol/L

Blood cultures

Management Protocol – Hypoxemia

Monitor Parameters Indications for intubation

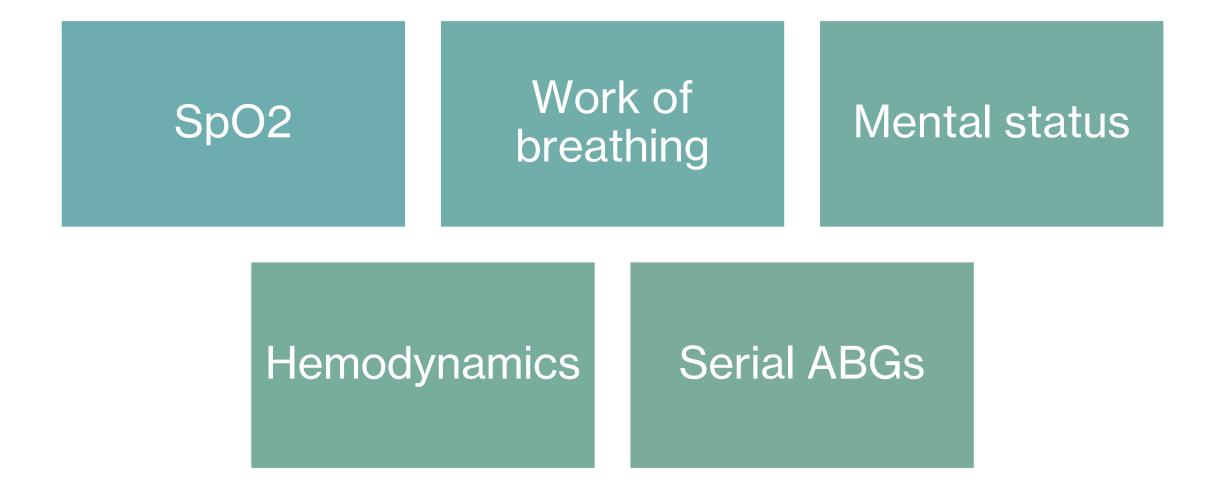
Risk Stratification

Need for immediate intubation?

Trial of non-invasive support?

Oxygen therapy

Nasal Cannula (1-6 L/min)


High-Flow NC (30-60 L/min)

Non-invasive ventilation

- Initial IPAP: 10 cmH2O
- Initial EPAP: 5 cmH2O
- FiO2: Titrate to SpO2 88-92%
- Rate: 12-15/min

Mechanical ventilation

Monitor Parameters

Case Presentation - ABG

Parameter	Value	Interpretation
pН	7.20	
PaCO2	80 mmHg	
PaO2	65 mmHg	
HCO3-	30 mEq/L	
02	5 L/min NC	

Management Protocol – Hypercapnia

1. NIV Strategy

- IPAP: Start 10, increase to effect
- EPAP: Start 5, titrate for OSA/COPD
- Monitor tolerance and air leak

2. Medical Management

- Bronchodilators
- Steroids if indicated
- Treat underlying cause

3. Monitoring

- Serial ABGs
- Continuous capnography if available
- Mental status
- Work of breathing

Indications for Intubation

Persistent hypoxemia despite maximal non-invasive support

Severe work of breathing

Altered mental status

Hemodynamic instability

Case Studies

Case Presentation

• Scenario: 55-year-old female admitted with COVID-19 pneumonia now with increased work of breathing.

Clinical Findings:

- ABG: pH 7.48, PaCO2 32 mmHg, PaO2 58 mmHg on 60L/min HFNC.
- Chest X-ray: Bilateral patchy opacities.
- Management

Case Presentation

- Scenario: 74-year-old female with CHF and COPD presenting with admitted with acute decompensation
- Clinical Findings:
 - ABG: pH 7.37, PaCO2 54 mmHg, PaO2 55 mmHg on 2L/min NC.
 - Chest X-ray: Bilateral pulmonary vascular congestion.
- Management

References

- Roca O, Riera J, Torres F, Masclans JR. High-flow oxygen therapy in acute respiratory failure. Respir Care 2010; 55:408.
- Fujishima, S. Guideline-based management of acute respiratory failure and acute respiratory distress syndrome. j intensive care 11, 10 (2023). https://doi.org/10.1186/s40560-023-00658-3
- Griffiths MJD, McAuley DF, Perkins GD, Barrett N, Blackwood B, Boyle A, et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir Res. 2019;6:e000420.
- O'Driscoll BR, Howard LS, Earis J, et al. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax 2017; 72:ii1.
- Su L, Zhao Q, Liu T, et al. Efficacy of High-Flow Nasal Cannula Oxygen Therapy in Patients with Mild Hypercapnia. Lung 2021; 199:447.
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease: 2024 Report. www.goldcopd.org (Accessed on November 16, 2023).
- Illustrations:
 - https://airwayjedi.com/2017/01/06/ventilation-perfusion-mismatch/
 - https://airwayjedi.com/2024/07/08/understanding-anatomic-dead-space-impact-on-ventilation/
 - https://www.nationaljewish.org/conditions/intracardiac-shunts